土木工程网,因为专业,所有专注,土木工程综合第一门户网站,土木之家!

最近更新|SVIP|会员中心|新闻公告|社区

资料
资料
文章
搜索

设计 办公楼 教学楼 住宅楼 综合商场 宾馆酒店 宿舍旅馆 工业厂房 施工组织 路桥工程 土木文库 别墅图纸 施工组织大全 站内公告

知识 施工技术 技术交底 设计知识 造价知识 安全文明 监理知识 市政工程 玩转工地 安装教程 在校学生 BIM知识 建筑图纸 结构图纸

资料 教程 工程测量 概预算 施工工艺 BIM教程 PKPM教程 土木网课 哈工大 同济大学 中南大学 东南大学 西北工大 考试教育

论文 建筑论文 结构论文 水利论文 现场管理 国标GB 行业标准 城建交通 地方标准 建设标协 建筑图集 规范合集 精选软件 建筑书籍

当前位置:首页 > 土木论文 > 结构论文  >  大体积混凝土温控技术

大体积混凝土温控技术

发布日期:2020-03-01 15:18:25来源:土木工程网责任编辑:土木龙


导读:
土木工程网
大体积混凝土(以下称砼)施工时,由于水泥水化过程中产生大量的水化热,由内向外传递,使砼内部温度逐步升高,而边缘受气温影响而降低,造成砼内表温差而产生温度应力。本文通过国内第一大承台,即五河口特大桥主墩承台近万
土木工程网

土木工程网

 摘  要:大体积混凝土(以下称砼)施工时,由于水泥水化过程中产生大量的水化热,由内向外传递,使砼内部温度逐步升高,而边缘受气温影响而降低,造成砼内表温差而产生温度应力。本文通过国内第一大承台,即五河口特大桥主墩承台近万方砼浇筑,在温控方面取得的成功经验,介绍大体积砼温控设计、监控、实施步骤,探索防止温差裂缝的方法。

关键词:大体积砼   温控   监测    防裂   技术 

1温控项目概述

五河口斜拉桥位于江苏淮安京杭运河、废黄河等五条河交汇处,故名五河口特大桥,其主塔承台平面尺寸为49.5m×33.1m的矩形截面,高6m。该承台号称国内第一大承台,砼方量9830m3,分两次浇筑成形,第一次浇筑厚度3.2m,砼5240m3,第二次浇筑厚度2.8m,砼4590m3,砼设计强度C30。

砼浇筑过程中,由于水泥水化热作用,承台内部温度经历升温期、降温期、稳定期三阶段,与此同时砼的弹性模量不断增长,由于早期弹模较低,产生的压应力很小,而后期弹模增大,产生的拉应力较大使砼内部形成拉应力。如果该应力超过其抗裂能力,砼就会开裂。而施工时间11、12月,正值当地年最低温季节,砼表面受气温影响而降温,更加剧了内外温差幅度,因此必须对承台大体积砼采取温控防裂措施。经对承台砼内部温度场及仿真应力场计算,制定不出现有害温度裂缝的温控标准,并据此制定温控措施。

2承台大体积砼温控计算 

温控计算采用《大体积砼施工期温度场及仿真应力场分析程序包》进行。该程序模拟砼施工情况,不仅考虑砼的浇筑分层、浇筑温度、养护、保温和砼的边界条件,而且考虑砼的弹性模量、徐变、自生体积变形、水化热散发规律等物理热学性能。计算参数根据招标文件、图纸和施工经验取值,施工时根据现场情况重新验算。

2.1计算条件

2.1. 1 根据承台结构特点,取1/4计算;砼分二次浇筑,浇筑厚度为3.2m和2.8m;

2.1. 2 气象资料:气温、水温根据资料取值,浇筑时间11、12月,上年同期温度最高16.5℃,最低-8.7℃;平均风力按6m/s考虑。

2.1.3 承台内部用冷却水管控温(图1,2);砼终凝后顶面洒水保温养护,侧面用5cm厚泡沫板保温。 

2.1. 4 C30砼弹性模量、热学参数、干缩变形和自生体积变形等按规范和经验取值。并考虑砼的徐变引起的应力松弛作用;砼泊松比为0.167,比热为1.0kJ/kg。取值见表1,2,3,4。[2]

2.1. 5 根据砼配合比,计算砼绝热温升为40℃。

2.2砼材料参数及数值模型

砼材料参数参考设计规范及试验结果。计算中使用的绝热温升、弹性模量、徐变度拟合公式分别为:

2.2. 1 水泥水化热:水泥水化热公式取双曲线函数  θ=θ0(1-е-m1 tm2)      (2-1)

式中: θ0-最终绝热温升,τ-时间,m1, m2 -参数。

                                                                                                                                                                                                                                      

2.2. 2 弹性模量:弹性模量随时间的增长曲线采用四参数双指数形式,即

E(τ)=E0 + E1(1-e-ατβ)                     (2-2)

式中:E0初始弹模;E1最终弹模与初始弹模之差;α,β与弹模增长速率有关的两个参数,其值分别取0.14和0.17。

2.2. 3 徐变度:根据工程经验,C30砼徐变度如下(单位:10-6/MPa):

  (2-3)     

3 计算结果及分析

3.1温度场主要特征

砼浇筑后2~3天即达到温度峰值,温峰持续1天左右开始下降,初期降温速率较快,以后逐渐减慢,15~20天后降温平缓,温度趋于稳定状态。砼内部最高温度约51℃,温度分布为中部高,四周较低。

3.2应力场主要特征

根据计算结果,承台各层砼主要龄期的最大主拉应力见表5,砼早期(14天左右)最大温度应力为1.60MPa,而此时C30砼劈裂抗拉强度一般应大于2.0Mpa(见表6),抗裂安全系数k>1.5,后期也有1.5倍以上的抗裂安全系数。如果砼施工质量良好,不会产生有害温度裂缝。根据计算结果,承台内部温度应力呈现出四周边缘应力较大,而中间应力较小的特征。

4 温度控制标准

根据计算结果,在施工期内为保证承台不出现有害温度裂缝,宜采取如下温控标准:

4.1砼浇筑温度:指砼平仓振捣后,上层砼覆盖前,距砼表面10~15cm处温度,浇筑温度≤25℃;

4.2砼内表温差:指砼内部平均最高温度与表面最低温度之差,砼内表温差≤25℃;

4.3砼内部最高温度:指砼内部平均温度最高值,砼内部最高温度≤65℃

4.4砼降温速率:≤2.0℃/d。

5 温控措施

5.1优化砼配合比,降低水化热

合理选择砼原材料,选择级配良好的砂、石料,选择优良的砼外加剂,增强砼强度,提高抗裂能力,降低水泥用量,是降低砼内部水化热温升的重要环节,因此必须进行砼配合比优化设计。

5.1.1控制原材料质量,减少水泥用量

1)水泥:采用PC32.5水泥,使用温度≤55℃,否则降低水泥温度。水泥分批检验,质量稳定。

2)粉煤灰:根据粉煤灰砼技术规范,大体积砼可按60d作为砼强度等级考核指标,在规范允许范围内尽量增加粉煤灰掺量,以推迟水化热温峰的出现,降低绝热温升,粉煤灰采用Ⅱ级灰。[3]

3)集料:细集料采用江苏宿迁中粗砂,细度模数2.4~2.6,含泥量<2%;粗骨料采用江苏盱眙二级配碎石,5~16mm占30%,16~31.5mm占70%,级配优良,含泥量<2%,其他指标符合规范要求。[1]

4)外加剂:采用缓凝高效减水剂,最大限度降低水泥用量,推迟水化热温峰的出现。掺量0.6%(占胶凝材料)。使用前配成溶液,拌和均匀,做好配制记录;固体外加剂提前分袋称好。[3]

5.1.2砼配合比

由于优化砼配合比,选用P.C32.5复合水泥,掺入20%Ⅱ级粉煤灰和超缓凝剂。粗集料采用二级配,选出最低空隙率和最佳级配曲线,在保证强度的前提下,尽量降低胶凝材料用量,从而大大降低了水化热,起到了早期抑制温升的效果。经检测比同等级砼最高温度推迟三天左右,最高温度降低30%左右。砼强度按60d龄期考核,但14天应达到22.MPa,28天应达到30 MPa。砼粘聚性良好,不离析、不泌水,坍落度16-18cm,初凝时间≥35h。

5.2 控制砼浇筑温度

砼开盘前,测水泥、砂石、水的温度,计算砼出机温度,并估算浇筑温度如超过25℃,应在夜间20时以后浇筑,并控制原材料的温度,如骨料遮阳洒水降温,水泥温度过高应要求厂家在出厂前放一段时间。

5.2.1 砼的出机温度:T0

T0=(0.20+Qs)WsTs+(0.20+Qg)WgTg+0.20WcTc+(Ww-QsWs-QgWg)Tw0.20(Ws+Wg+Wc)+Ww

式中:Qs、Qg分别为砂、石的含水量,以%计;Ws,Wg,Wc,Ww分别为每方砼中砂、石、水泥和水的重量(粉煤灰计入水泥中);Ts,Tg,Tc,Tw分别为砂石、水泥和水的温度。

5.2.2 砼浇筑温度:Tp

Tp=To+(Tn-To)(θ1+θ2+θ3+...+θn)

式中:Tn砼运输和浇筑时气温;θ1,θ2,θ3,θn有关系数,数值如下:(1)砼装、卸和转运,每次θ=0.03;(2)运输时θ=Aτ,τ运输时间,A表8;(3)浇筑时θ=0.003τ,τ浇筑时间。

5.3埋设冷却水管,控制砼内部温度

5.3.1冷却水管位置

冷却水管采用φ50mm薄壁钢管(壁厚2.5mm);冷却水管沿垂直方向布置5层,层间距1m,水平间距1m,每根管长度≤180m。进出水口集中布置,以便统一管理,进水口利用阀门控制冷却水流量。(如图1、图2),冷却水用江水。

5.3.2冷却水管使用及其控制

1)冷却水管使用前进行压水试验,防止漏水、阻水。

2)砼浇筑到各层冷却管标高后即通水,通水时间10~15天,具体时间根据检测结果确定,通水流量大于25L/min;

3)设置水箱以循环水冷却控制进出水温,在保证冷却管进水温度与砼内部最高温差≤25℃条件下,尽量降低冷却水温度。

4)第一层砼浇筑时第一、第二层冷却水管通水;第二层砼浇筑时,第三四五层冷却水管通水。

5)通水冷却全部结束后,用同标号水泥浆或砂浆压注管道。

5.4内降温、外保温、加强养护

由于承台冬季施工,要特别重视砼的保温工作,控制砼内外温差≤25℃。措施:钢模板外嵌5厚泡沫板,吊挂麻袋,再用土工布围裹,碘钨灯照射增加砼表面温度,顶面覆盖土工布。砼终凝后在表面洒水养护,顶面尽量采取蓄水养护。养护对砼强度增长及减少温差、收缩裂缝具有重要意义。

5.5控制浇筑质量,提高抵抗温差拉应力强度

为提高砼均匀性和抗裂能力,必须加强各环节控制:(1)砼拌合运输、浇筑振捣、保温养护全过程监控,严格按规范施工。(2)为增强砼的抗裂能力,在承台外表面布设一层防裂钢筋网。(3)短间歇连续施工,两次浇筑间歇期控制在10天内。

6 砼现场温度监控

为了随时跟踪砼内部温度变化情况,浇筑前按照全面控制承台内部温度变化的要求布置测温传感器。真实反映各层砼的温控效果,使之控制在温控范围内,利于异常情况及时采取措施。

6.1测点布设  根据温度计算成果,在承台内部布置6层测温点,每层沿X、Y方向布置14个测点,测点总数84个。测点沿承台的1/4部位水平布置,见图3、图4。

6.2监测仪器  采用PN结温度传感器, PN—4C型数字多路巡回检测控制仪。温度传感器的主要技术性能:测温范围-50℃~150℃;工作误差±0.5℃;分辨率0.1℃;平均灵敏度-2.1mv/℃。

6.3测试要求  砼浇筑后立即测试,连续进行。温度测试,峰值出现前2h监测一次,峰值后4h监测一次,持续5天,然后每天测2次,直到温度稳定。

6.4测试内容  浇筑开始,连续监测各点温度变化情况,同时监测砼入仓温度、气温、冷却管进出口水温、浇筑温度,计算内表温差,进行现场控制,做好记录(表9)。

7 温度监测结果及分析

7.1整体分析

如图4,升温初期呈缓慢上升,之后急剧升温,升温阶段在3-6天,达到峰值后,温度稳定2天左右,随后缓慢下降。第一层最高温度为30.2℃,断面平均最高温30℃;第二层最高温度为35.6℃, 断面平均最高温34.6℃。与升温相比,降温阶段长得多。降温速率较缓慢,最大降温速率1.8℃/d。

分层施工时,第一层在施工间歇期内,温度先急剧上升,然后缓慢降温,当被第二层砼覆盖后,因第二层砼急剧升温,使第一层砼温度不同程度的回升。表面测点温度与断面平均温度相比,总体趋势不变,但温度变化起伏较多,由于表面测点距表面5cm,向外界散热快,受气温的影响大,故随气温的变化而变化。第二层砼在温峰过后,顶层测点温度缓慢上升,是因顶面良好保温和侧面回填土的保温所致。

7.2承台中心到边缘的温度变化

图5绘出了承台中心到边缘的温度曲线,可以看出:从中心到距边缘3.5m范围温度分布较均匀,承台边缘3.5m外温度变化剧烈,降温速率快,越靠近中心温度变化越平缓。

承台中心与边缘温度,下降速率早期控制在0.5℃~0.8℃/d,后期也未超过1.5℃/d,由于承台顶、侧面的良好保温,故边缘温度虽变化剧烈,但下降幅度不甚大,随着中心温度向外传递逐步在边缘形成缓变区,起到了保温作用,在最寒冷季节,两次最低气温降到-8℃时未出现太大的影响。

7.3冷却水的降温效果、温控效果

冷却效果:两次浇筑,冷却水管的进、出口水温差分别为5.7-11.6℃和5.8-10.℃,起到了早期削温峰及防止温度回升的效果。根据内部温度变化,有序地分层通水降温,对缩小内表温差起到了极为重要的作用。温峰过后,用冷热水调合成合适的水量和进水温度,调整降温的速率,达到后期温度缓慢下降的保温效果,内表温差未超过温控标准。

温控效果:第一层断面最大内表温差均在15.3-19.4℃之间,第二层均在15.4-19.8℃之间,低于设计要求的25℃。砼入仓温度均在6 -12.4℃,满足冬季施工规范和温控要求,各层温度最大下降速率为1.8℃/d,低于温控要求,因此承台不会出现有害的温度裂缝。

8结语

五河口特大桥主墩承台施工,采取了一系列的温控措施,砼最大绝热升温没有超过40℃,砼内外温差没有超过25℃,承台表面没有出现温度裂缝,从而保证了承台的施工质量。结果表明其温控措施是成功的,有效的控制温度裂缝的产生,对同类施工积累了成功经验。

参考文献:

[1] 《公路桥涵施工技术规范》[S].(JTJ041—2000). 北京:人民交通出版社,2001

[2]  江正荣、朱国梁编著 [M].简明施工计算手册(第二版).北京:中国建筑工业出版社,1999

[3] 项玉璞主编.冬期施工手册 [M].北京:中国建筑工业出版社,1988

 

 

 

 

 

土木工程网

最近更新 | 关于我们 | 联系方式 | 代做毕业设计 | 免责声明 | 下载帮助 | 广告联系 | 网站地图 | 公众号| 手机版 | sitemap

Copyright 2008-2023 TMGCW.com 【土木工程网】 版权所有 黔ICP备13000263号-8贵公网安备 52010302003430号

声明:本站资源均来源于网友投稿或转载自其他网站,本站不进行任何扫描/翻录/篡改署名,所有资料仅供网友学习参考交流,正式使用请购买正版,若侵犯了您的权益,请联系我们予以删除。