土木工程网,因为专业,所以专注,土木工程综合第一门户网站

会员中心|在线支付|加入VIP|资源需求|新闻公告

资料
资料
文章
搜索

设计 办公楼 教学楼 住宅楼 综合商场 宾馆酒店 宿舍旅馆 厂房 施工组织 路桥工程 建筑书籍 设计书籍 施工书籍 土木文库 公告

知识 施工技术 技术交底 设计知识 造价知识 安全文明 监理知识 市政工程 玩转工地 安装教程 在校学生 BIM知识 建筑图纸 结构图纸

教程 专辑 工程测量 概预算 施工工艺 BIM教程 PKPM教程 高校土木 哈尔滨工业大学 同济大学 中南大学 东南大学 西北工大 西安交大

论文 建筑论文 结构论文 水利论文 现场管理 国标 技术规范 验收规范 建筑图集 结构图集 地区图集 CAD软件 天正系列 热门软件

当前位置:首页 > 建筑知识 > 玩转工地  >  超高层建筑结构设计的优化策略及问题探讨

超高层建筑结构设计的优化策略及问题探讨

发布日期:2019-12-17 12:13:31来源:土木龙推荐:土木工程网


上一篇:建筑结构设计的四项基本原则,刚柔相济   下一篇:怎么计算一个项目的最佳容积率?
导读:
土木工程网
随着塔楼高度的增加,塔楼墙、柱自重所占的比例增加,这一方面是由于塔楼抗侧刚度需要,另一方面是由于楼面恒载增加,导致承担的竖向荷载较大;楼面恒载所占的比例在20%~25之间,比例较大;优化楼面恒载,不仅可以降低自身的重量,而且进一步降低柱、墙承载的竖向荷载,同时,对降低地震作用也有重要意义。减轻塔楼重量的方法:高强混凝土和高强钢材的使用(降低柱、墙尺寸);混合结构体系(钢材代替部分混凝土);采用压型钢板组合楼盖体系;使用轻质隔墙(如轻钢龙骨隔墙);减小附加恒载(如采用轻质填充材料)。
土木工程网

土木工程网
一、超高层建筑控制荷载及作用的研究
(1) 竖向荷载组成及优化策略
随着塔楼高度的增加,塔楼墙、柱自重所占的比例增加,这一方面是由于塔楼抗侧刚度需要,另一方面是由于楼面恒载增加,导致承担的竖向荷载较大;楼面恒载所占的比例在20%~25之间,比例较大;优化楼面恒载,不仅可以降低自身的重量,而且进一步降低柱、墙承载的竖向荷载,同时,对降低地震作用也有重要意义。减轻塔楼重量的方法:高强混凝土和高强钢材的使用(降低柱、墙尺寸);混合结构体系(钢材代替部分混凝土);采用压型钢板组合楼盖体系;使用轻质隔墙(如轻钢龙骨隔墙);减小附加恒载(如采用轻质填充材料)。
(2)风荷载研究与优化策略
风工程研究的主要方法有现场监测(最直接、可靠方法,但周期长、费用高);风洞试验(可系统开展研究,但相似关系无法完全满足);数值模拟(重要手段与发展方向,成本低,周期短,但目前研究尚不充分)。由于风速较大,且结构高柔,高层建筑易受涡激振动影响产生横风向风荷载。当来流风速增加到一定临界值时,建筑周围产生漩涡脱落现象,从而造成涡激振动。通过沿高度改变建筑截面形状、圆弧倒角、切角和立面开洞等方法,可以减小涡激振动在高层建筑高度方向的一致性,从而减小了建筑的横风向风荷载。上海中心采用了三种方式:圆弧倒角,契形立面, 变截面。
(3)长周期地震作用特点及影响因素
目前国内建成与在建的有许多超高层建筑其自振周期很多都在5.5s以上。对于超高层建筑结构,长周期响应对倾覆力矩起绝对的控制作用; 高阶振型响应对基底剪力的影响较显著,不可忽略。
随着我们对超高层建筑的认识,我们把第一周期限制放宽一到两秒左右,上海中心做到9s,刚开始设计的时候所有专家说应该限制在7s,我们放长了一点,这对于降低地震的作用非常有利。随着经验积累和数据更加丰满,可能我们胆子会更大一点。
    上海中心、长沙国际金融中心和郑州绿地这三个项目,其中上海中心高632m,所以X向第一周期和第二周期都在长周期上,长沙国金、郑州绿地也是落在长周期上,必须考虑下长周期对于地震效用的影响。长周期在上海中心贡献率达到64%,但是倾覆力距比例达到99%,这是长周期在结构设计中直观的反映,我们以后会有更详细的百分比出来,现在的百分比会给我们一个大概的概念。
二、超高层建筑结构设计中的一些问题探讨
(1)关于结构整体高宽比的讨论
高度和高宽比是超高层结构设计的主要控制因素,也是决定结构刚度的重要指标;基底倾覆力矩与建筑高度的平方成正比;建筑顶部侧移与建筑高度的四次方成正比,并按结构宽度的三次方递减。高宽比直接与超高层结构的受力性态相关:高宽比<2,剪切变形为主;高宽比=2~5,弯剪变形;高宽比>5,弯曲变形为主;高宽比>9,塔楼风荷载下加速度较大, 舒适度需要重点考虑。超高层结构由于占地和功能的限制,基底尺寸通常不会过大,一般为60~80m左右,因此,对于超过400m以上超高层,高宽比一般为7~9。 当高宽比超过8时,通常外筒设计为巨型框架或巨型支撑框架(框筒),有效提高结构的抗侧刚度。当高宽比超过8时,横风向效应显著增强,在8度设防以下地区,风荷载通常成为控制因素。
(2)关于核心筒高宽比的讨论
核心筒高宽比的影响:对于常规的框架-核心筒结构体系,核心筒承担着大部分剪力和倾覆力矩,故核心筒高宽比也是一个重要参考因素。但对于超高层而言,巨型框架、支撑框筒等高度更大的外框结构常常取代了一般框架,因此,核心筒的承担剪力和倾覆力矩比例会降低。
核心筒面积比例指核心筒的围合面积占楼面面积的比例,是另一个重要参考指标。围合面积比例<20%,核心筒刚度偏弱,宜加强外框筒,采用支撑框筒或巨型结构;围合面积比例=20%~27%,核心筒刚度适中;围合面积比例>27%,核心筒刚度较大,承担剪力和倾覆力矩比例大幅提高,应尤其注重核心筒的性能化设计及二道防线设计。
 
(3)结构体系选型研究
     结构高度达到450m时,对于不含伸臂桁架的弱框筒和筒中筒体系,结构刚重比成为主要控制参数,外框梁截面显著增大。我国《高层建筑混凝土结构技术规程》中对框架-核心筒体系要求,外框承担的地震剪力标准值不宜小于结构底部剪力标准值的10%。由于框筒体系、弱框筒体系柱距密,框架梁截面高,外框的刚度相对较大,因此,分配的地震剪力较多,可以满足规范10%的要求。 对于框架-核心筒、巨型框架-核心筒体系超高层建筑,由于外框柱距较大,外框刚度相比核心筒小很多,10%的外框剪力标准值较难满足。
从结构经济性角度出发,350m高度选择框筒-核心筒体系较优; 450m高度选择巨型框架-核心筒体系较优;对于450m以下的超高层建筑:当结构处于基本烈度7(0.1g)、基本风压0.6kN/m2时,结构弹性指标受风荷载控制;当结构处于基本烈度8(0.2g)、基本风压0.40kN/m2时,结构弹性指标受地震作用控制;当结构高度达到450m时,结构刚重比成为主要控制参数,宜设置伸臂桁架以提高结构刚重比;当结构高度超过450m时,弱框筒和筒中筒结构体系采用外框梁截面较高,导致用钢量较大,经济性较差;随着结构高度增加,巨型框架结构体系表现出良好的受力性能和经济性;超高层结构体系选型需要综合考虑结构经济性、施工的可行性及周期、建筑功能与景观的影响,因此,结构体系选型需要在超高层项目方案阶段尽早介入。
(4)伸臂桁架结构研究
伸臂桁架结构概念:高层建筑框架-核心筒结构体系,存在侧向刚度不足、核心筒倾覆力矩偏大的缺陷。通过设置抗弯刚度较大的伸臂桁架,连接核心筒和外框架,可将周边柱的轴向刚度用来增加结构的抗倾覆力矩,显著提高结构的抗侧刚度,减小核心筒倾覆力矩。
伸臂桁架有四种结构形式:1)两点连接方式;2)单点上部连接方式;3)单点下部连接方式;4)单点中间连接方式。采用SAP2000对各种伸臂桁架形式进行了极限承载力分析,得出结论:形式2,3的刚度较好,形式4的强度较好。
伸臂桁架结构连接节点:1)伸臂桁架与核心筒连接节点,采用方式1即伸臂桁架正方(工型),采用单板与墙体内钢骨连接。其优点是墙肢内连接简单,适用于墙肢较薄情况。缺点是节点板较厚,应用工程案例有重庆国金中心,上海中心7、8区节点;采用方式2即伸臂桁架侧方(H型),采用双板在墙体内与钢骨连接。 其优点为节点板厚度较小,缺点是墙体内钢筋连接复杂,适用于墙肢较厚情况,应用工程案例有深圳京基中心,上海中心1~6区。 2)伸臂桁架与框架柱连接节点:采用方式1其优点是内力传递直接,节点板最少,适用于十字形钢骨; 缺点是伸臂桁架与框架柱内纵筋、箍筋相碰(型钢混凝土柱的缺点),应用工程案例有重庆国金中心、上海白玉兰广场。采用方式2的优点是适用于钢管混凝土柱或者内包钢管的型钢混凝土柱,缺点是伸臂桁架与框架柱内纵筋、箍筋相碰(型钢混凝土柱的缺点),应用工程案例有上海中心等。
(5)耗能阻尼器应用研究
阻尼器的布置共有三种方案,方案1为单根阻尼支撑的布置形式;方案2为水平方向布置粘滞阻尼器;方案3为垂直方向布置粘滞阻尼器。
设置阻尼器后,优化了加强层构件之间的相对刚度比,弱化了地震作用下的层间刚度突变,降低了核心筒墙体的损伤程度,提高了主要竖向构件的地震作用安全度。
设置阻尼器后,部分的塑性耗能被粘滞阻尼器耗能代替,从能量的角度说明阻尼器对主要结构构件起了保护作用。
在伸臂桁架阻尼器布置方案的选择上,一般应将粘滞阻尼器设置在变形和速度最大的位置,使得粘滞阻尼器充分变形,最大程度地耗散地震能量,减小结构的地震反应。将粘滞阻尼器设置在伸臂桁架与外框架连接处的方案3,比方案1、2减震效果更明显。
环带桁架阻尼器较优位置研究:由结构阻尼环带最优位置研究,可以看出:
1)最大层间位移角与最大层间相对速度出现的位置较为一致。
2)将阻尼器布置在层间位移角或层间相对速度大的位置,减震效果较好,这与《建筑消能减震技术规程》待审稿的条文3.1.6消能部件宜设置在层间相对变形或层间速度较大的位置相符。
环带桁架阻尼器与结构高度的关系研究发现:
1)从基底剪力和层间位移角分布来看,随着结构高度的增加,阻尼器的耗能效率在降低,当塔楼高度增加到 400m以上时,阻尼器对降低塔楼层间位移角的效果不明显了;
2)从耗能和层间速度角度来看,随着结构高度的增加,塔楼在地震作用下的层间速度降低,这导致阻尼器的效率下降,从而使塔楼结构高度在超过400m后,整体的耗能减震效果逐渐不明显。     
(6)巨型柱设计研究
上海中心巨型柱受力情况:竖向荷载分配:54%;底部剪力分配:57%;底部倾覆力矩分配:79%;巨型柱的地位非常重要,对构件的选型需要重点考虑。目前常用的两种构件形式: 1)SRC型钢混凝土柱,包括上海中心、深圳平安、上海环球金融中心等;2)CFT钢管混凝土柱,包括天津117、台北101、深圳京基中心等。上海中心巨型柱选型时,从受力角度,两种巨型柱形式都满足要求;从吊装和安装角度,型钢混凝土柱较有优势。450m以上巨型柱的结构会越来越多的使用,上海中心8个巨型柱,这个柱子是一个三维体,在做这个项目前两三年就开始研究了。台北101柱子是243米,三米以内都可以用这个柱子断面形,三米以外都不行,我相信他们做这个之前也有研究积累。我们也对弹塑性强度也做了研究,延性系数达到2.81,所以应该说巨型柱还是可以当作一般柱在构造中特殊处理。
土木工程网

相关内容

    无相关信息

关于我们 | 联系方式 | 代做毕业设计 | 版权声明 | 下载帮助 | 广告联系 | 网站地图 | 公众号| 手机版

Copyright 2008-2020 TMGCW.com 【土木工程网】 版权所有 黔ICP备13000263号-8

声明: 本站资料由用户上传分享,如有侵犯您的权益,请联系我们,24小时内删除