设计 办公楼 教学楼 住宅楼 综合商场 宾馆酒店 宿舍旅馆 工业厂房 施工组织 路桥工程 土木文库 别墅图纸 施工组织大全 站内公告
知识 施工技术 技术交底 设计知识 造价知识 安全文明 监理知识 市政工程 玩转工地 安装教程 在校学生 BIM知识 建筑图纸 结构图纸
资料 教程 工程测量 概预算 施工工艺 BIM教程 PKPM教程 土木网课 哈工大 同济大学 中南大学 东南大学 西北工大 考试教育
论文 建筑论文 结构论文 水利论文 现场管理 国标GB 行业标准 城建交通 地方标准 建设标协 建筑图集 规范合集 精选软件 建筑书籍
发布日期:2020-02-24 23:25:06来源:土木工程网责任编辑:土木龙
1、 “可泵性”的试验测试与评价
在长期的混凝土泵送施工中,堵泵堵管是最常遇到的问题。混凝土拌和物之所以可以泵送,是依靠水泥砂浆包裹粗骨料、水泥净浆包裹细骨料传递泵压力和润滑拌和物而流动。在管道中如果拌和物发生泌水或泌浆离析,粗细骨料失去浆体的包裹润滑(如图2所示),骨料与管壁的摩擦阻力会骤然增大,就可能发生堵管。同样,如果拌和物入泵时就发生离析,很可能导致堵泵。因此,“可泵”的首要条件是拌和物不离析,至少不产生过度离析。最早避免拌和物离析的方法,主要根据经验和依靠良好的骨料级配、砂浆含量、粉料(细砂和水泥)含量等保证。
英国R.D. Browne和P.B. Bamforth经过长达8年的泵送试验研究,试图建立检验新拌混凝土泵送性能特征值的测试方法,包括:
(1)用压力泌水试验测试混凝土“脱水”的内部阻力;
(2)测定总体骨料的空隙率,辅助泵送混凝土配制;
(3)在泵送管线上测试压力,评价泵的效率和性能,以及混凝土泵送性能。他们认为,在压力作用下混凝土拌和物快速“脱水”是导致堵管的重要原因(参考图2),因此研制了图3所示压力泌水试验装置。
压力泌水试验方法:将混凝土拌和物分两层装入125mm缸中(不捣实),加压到35kgf/cm2(约3.5MPa),然后打开泌水阀,记录10秒和140秒泌水体积V10和V140。试验显示,各种坍落度的混凝土拌和物,在140秒以后压力泌水量很小,因此试验到140秒就可以终止。
典型的压力泌水试验结果如图4a所示,其中V10高、V140低, 不能泵送;V10低、V140高,可泵送。Browne等认为,压力作用下快速排出的水量V10,代表了混凝土拌和物中多余的水分;压力作用140秒后,拌和物中的水处于被压缩颗粒的空隙中,不易被挤压出。新拌混凝土“脱水” 快(泌水多),V10较大,(V14 0-V10)则相对小;反之,(V140-V10)较大,则表明混凝土具有较好的可泵性,因为(V140-V10)代表了颗粒之间起润滑作用的有效水量。用最大骨料粒径(Dmax)20mm的混凝土进行试验,得到可泵送(V140-V10)最小值定量结果如图4b所示。
这样, 测试混凝土拌和物的坍落度、V10和V14 0,计算(V14 0-V10),然后在图4b确定是否达到最小允许值,就能够判断混凝土是否可以泵送。需要指出,压力泌水试验是用来判断混凝土拌和物发生堵泵堵管的危险性,也可以判断拌和物多余水量的高低,作为改善配合比设计的参考,但不能用于判断混凝土泵送阻力或“易泵性”。此外,图4b中“可泵”与“不可泵”界限的划分,是有限试验(Dmax=20mm的混凝土)得到的结果,并不一定普遍适用。
张晏清等试验研究用坍落度(S)和140秒压力泌水总水量(V140)两个指标表征混凝土可泵性,结合实际工程泵送施工的验证,将可泵性分为良好、中等和不可泵三个等级:S<16cm,压力泌水量(V140)在70ml~110ml之间,混凝土可泵性良好;S<8cm,或V14 0 >130ml,或V140<40ml,不可泵;介于以上范围,可泵性中等。此外,认为混凝土拌和物稳定性由加水量和小于0.3mm的细粉体积决定;砂浆体积与砂浆流动性共同作用决定混凝土流动性;减水剂和粉煤灰可提高可泵性。
法国D. Kaplan等建立和使用一个148m长的“真实泵送”试验管线系统,进行了68次不同混凝土拌和物泵送测试(包括许多发生堵管情况),研究堵管产生的过程和机理,以及避免的方法。其试验研究发现,混凝土拌和物组成、泵管系统设计或泵送过程操作不当,均可能诱发堵管,并可能发生在泵送的任何阶段包括润滑管道(润管)、泵送、中断重新启动和清洗管道阶段。
堵管产生原因和防止方法简述如下:
润管阶段堵管:
活塞式泵的每次推进,会使混凝土的粗骨料在润管水泥浆中前移,在水平管段跑到润管浆体前面并聚集,达到一定量就会发生堵管。堵塞容易发生在弯管处和安装安全阀、流量计等部位。避免的方法包括,在泵料斗混凝土不要与润管水泥浆混和,应待润管浆液全部出了泵的料斗,再加入混凝土,或润管浆与混凝土之间用砂浆隔离;润管阶段,泵宜以低速运行;使用润管水泥浆的量应与管道长度相适应,每20m 长管用约50kg水泥(润管水泥浆水灰比0.5~0.8)。
泵送过程堵管:
骨料最大粒径(Dmax)超过管直径1/4可能导致稳定泵送状态的堵管;快速提高泵送速 率,有时可引起锥形管道(直径减小)部位堵塞;局部的干扰如相连管节磨损程度不同、安装流量计或有橡胶管段等,可能诱发堵塞产生;混凝土拌和物在泵料斗中发生离析,可能大幅度增大进入管道的拌和物粗/细骨料比(C/F比),并因而发生堵塞;混凝土拌和物本身粗/细骨料比大,可能在泵料斗形成“拱”,使拌和物下 料不畅,大量空气进入管道形成压缩空气气囊,可能导致拌和物不稳定流动和引发堵塞;混入混凝土中异物, 如大石块、长金属丝等,也可能导致堵塞。
泵送过程中断,重新启动时堵管:
因为意外情况如清理管道堵塞或混凝土罐车迟到等,泵送过程可能中断数十分钟甚至几个小时。首要的是必须避免混凝土在管道中凝结。在静止状态,如果混凝土拌和物离析,骨料沉降接触管壁,水平管下部的润滑层会消失,泵送阻力会大幅度增大,使泵送重新起动困难或堵塞管道。
清洗管道时堵管:
直接用水清理和清洗管道,会清洗掉骨料表面包裹的砂浆,导致骨料失去润滑而产生堵塞。正确的方法为,在两个橡胶球之间填充润湿的牛皮纸(或废水泥包装袋),形成约1m长的低渗透性隔离塞,使水不接触混凝土拌和物,然后再将水泵入管道进行清洗。
上述产生堵管的原因中,在开始的润管阶段和结束的清洗管道阶段,发生堵管多属于错误操作方式造成的,采用正确的泵送工艺流程一般可以避免。
在泵送过程中、泵送中断重新启动过程发生堵管,混凝土拌和物的“可泵性”不良或泌水离析大则是主要原因。
D. Kaplan等尝试建立常压自由泌水速率与堵管之间的关系,采用图5所示的试验装置和程序测量混凝土拌和物的泌水速率,在真实泵送管道上实测检验可泵性(是否堵管),得到的结果见图6。
结果分析表明,泌水速率可以反映混凝土拌和物的稳定性,与发生堵管的危险性有一定相关性;粗骨料为圆角(卵石)、增加粒径0.1mm~0.7mm砂比例,有助于降低泌水速率和改善泵送性能。然而,管道堵塞是一种概率事件,诱发因素较多, 不能从单一泌水速率指标判断发生或不发生,但泌水速率低表明泵送过程出问题的几率低。